VOF Bibliography
[579]
Baeckerud, L., Chai, G. and Tamminen, J. 1992. Solidification Characteristics of Aluminum Alloys 2, American Foundry Society, Inc. Des Plaines, Illinois.
[580]
Brackbill, J. U., Kothe, D. B., and Zemach, C. 1992. A Continuum method for modeling surface tension, J. Comp. Physics, 100, pp. 335-354.
[581]
Brennen, C.E., Cavitation and Bubble Dynamics, Oxford University Press, 1995.
[582]
Butterworth, D. and Hewitt, G.F. 1974. “Two-Phase Flow and Heat Transfer”, Oxford University Press, Oxford.
[583]
Carman, P. C. 1937. “Fluid Flow Through Granular Beds”, Transactions of the Institution of Chemical Engineers, 15, pp. 150-166.
[584]
Chan, S.H., Cho, D.H., Kocamustafaogullari, G. 1983. "Melting and solidification with internal radiative transfer - a generalized phase change model", International Journal of Heat and Mass Transfer, 26(4), pp. 621-633.
[585]
Chang, S. and Stefanescu, D. M. 1996. “A Model for Macrosegregation and Its Application to Al-Cu Castings”, Metallurgical and Materials Transactions, 27A, pp. 2708-2721.
[586]
Criscione, A., 2011. "Numerical investigation of impacting water drops in air crossflow". In: 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal.
[587]
Ellion, M.E. 1953. “A study of the mechanism of boiling heat transfer”, Ph.D. Dissertation, California Institute of Technology.
[588]
Epstein, P., Plesset, M., On the stability of gas bubbles in liquid-gas solutions, J. Chemical Physics, Vol. 18, No. 11 (1985).
[589]
Fujimoto, H. 2007, "Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate". Int. J. Multiphase Flow, 33: p. 317-332.
[590]
Gopalakrishnan, S. and Schmidt, David P., 2009. "A Computational Study of Flashing Flow in Fuel Injector Nozzles", SAE Int. Journal of Engines. 1(1), pp. 160−170.
[591]
Hardt, S., and Wondra, F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. Journal of Computational Physics, 227(10):5871–5895, 2008.
[592]
Landau, L.D., Lifshitz, E.M., Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics), 1984.
[593]
Meredith, K.V., Heather, A., de Vries, J. & Xin, Y., A numerical model for partially-wetted flow of thin liquid films. Computational Methods in Multiphase Flow, VI, pp. 239-250, 2011.
[594]
Metzner, A. B. 1985. “Rheology of Suspensions in Polymeric Liquids”, Journal of Rheology, 29(6), pp. 739-775.
[595]
Muzaferija, S. and Peric, M. 1999. Computation of free surface flows using interface-tracking and interface-capturing methods, Chap. 2 in O. Mahrenholtz and M. Markiewicz (eds.), Nonlinear Water Wave Interaction, Computational Mechanics Publications, WIT Press, Southampton.
[596]
Muzaferija, S., Peric, M., Simulation of evolution of dissolved gas in liquids, Internal document.
[597]
Nemec, T., Marsik, F., The Classical Multicomponent Nucleation Theory for Cavitation in Water with Dissolved Gases, Proc. 7th Int. Symp. on Cavitation, Paper No. 120, (2009)
[598]
Neroorkar, K.D., Gopalakrishnan, S., Schmidt, David P., and Grover, R.O. Jr., 2011. "Simulation of FlashBoiling in Pressure Swirl Injectors", Atomization and Sprays, 21(2), pp. 179−188.
[599]
Ni, B., Pieprzak, J., Transportation and transformation of air bubbles in aerated oil through an engine lubrication system, SAE-Paper 2004-01-2915.
[600]
Oldenburg, C. M., and Spera, F. J. 1992. “Hybrid Model for Solidification and Convection”, Numerical Heat Transfer, Part B, 21, pp. 217-229.
[601]
Olsson, E., and Kreiss, G. 2007.
“A conservative level set method for two phase flow II ”, Journal of
Computational Physics, 785-807, 2007.
[602]
Rohsenow, W.M. 1952. “A Method of Correlation Heat Transfer Data for Surface Boiling of Liquid”, Trans. ASME, 74, 969.
[603]
Saiz Jabardo, J.M., Fockink da Silva, E., Ribatski, G. and de Barros, S.F. 2004. “Evaluation of the Rohsenow Correlation Through Experimental Pool Boiling of Halocarbon Refrigerants on Cylindrical Surfaces”, J. of the Braz. Soc. of Mech. Sci. & Eng, XXVI, No. 2.
[604]
Sauer, J., Instationaer kavitierende Stroemungen - Ein neues Modell, basierend auf Front Capturing VOF und Blasendynamik, Dissertation, Universitaet Kalrsruhe, 2000.
[605]
Sazhin, S.S. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32:162–214, 2006.
[606]
Schlottke, J., and Weigand, B. Direct numerical simulation of evaporating droplets. Journal of Computational Physics, 227(10):5215–5237, 2008.
[607]
Sikalo, S. 2005, "Dynamic contact angle of spreading droplets: Experiments and simulations". In: Physics of Fluids, 17, 062103.
[608]
Singhal, A.K., Athavale, M.M., Li, H., Jiang, Y., Mathematical Basis and Validation of the Full Cavitation Model, J. Fluids Engineering, Vol. 124 (2002).
[609]
Swaminathan, C.R. and Voller, V.R. 1992 “A general enthalpy method for modeling solidification processes”, Met. Trans. B, 22(B), pp. 651-664.
[610]
Teskeredzic, A., Demirdzic, I. and Muzaferija, S. 2002. “Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems”, Numerical Heat Transfer, Part B, 42, pp. 437-459.
[611]
Voller, V.R. 1997 “An overview of numerical methods for solving phase change problems”, in: Advances in Numerical Heat Transfer, W.J. Minkowycz and E.M. Sparrow Eds., Taylor & Francis, pp. 341-378.
[612]
Yokoi, K. 2009, "Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface". In: Physics of Fluids, 21, 072102.