Finite Element Bibliography
[917]
Baaijens, F. P. T. 1998. "Mixed finite element methods for viscoelastic flow analysis: a review", J. Non-Newton Fluid, 79. pp. 361–385.
[918]
Babuska, I. 1971. "Error-bounds for finite element method", Numerische Mathematik, 16, pp. 322–333.
[919]
Babuska, I. 1972. "The finite element method with Lagrangian multipliers", Numerische Mathematik, 3, pp. 179–192
[920]
Bird, R. B., Wiest, J. M. 1995. "Constitutive Equations for Polymeric Liquids", Annu. Rev. Fluid Mech., 27, pp. 169–193.
[921]
Brezzi, F. 1974. "On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers", ESAIM: Mathematical Modelling and Numerical Analysis, 8, pp. 129–151.
[922]
Brooks, A. N., Hughes, T. J. R. 1982. "Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods in Appl. Mech. Eng., 32, pp. 100–259.
[923]
Bush, M. B., Tanner, R. I. 1983. "Numerical solution of viscous flows using integral equation methods", Int. J. Numer. Meth. Fl., 3, pp. 71–92.
[924]
Bush, M. B., Tanner, R. I., Phan-Thien, N. 1985. "A boundary element investigation of extrudate swell", J. Non-Newton Fluid, 18, pp. 143–162.
[925]
Castro, J. M., Macosko, C. W.
1982. "Studies of mold filling and curing in the reaction injection molding
process", AIChE Journal, 8, 22.
[926]
Crochet, M. J., Walters, K., Davies, A. R. 1984. Numerical simulation of non-Newtonian flow, Elsevier Amsterdam ; New York.
[927]
D'Elia, R.
Dusserre, G., Del Confetto, S., Eberling-Fux, N., Descamps, C., Cutard, T.
2016. "Cure kinetics of a polysilazane system: Experimental
characterization and numerical modelling", European Polymer Journal, 76,
40-52.
[928]
Giraud, L., d'Humières, D., Lallemand, P 1998. "A lattice Boltzmann model for Jeffreys viscoelastic fluid", Eur. Phys. Lett. 42, p. 625.
[929]
Guénette, R., Fortin, M. 1995. "A new mixed finite element method for computing viscoelastic flows", J. Non-Newtonian Fluid Mech., 60, pp. 27–52.
[930]
Hughes, T. J. R., Franca, L. P., Balestra, M. 1986. "A new finite element formulation for computational fluid dynamics: V. {Circumventing} the {Babu\v{s}ka}-{Brezzi} condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations", Comput. Methods in Appl. Mech. Eng., 59, pp. 85–99.
[931]
Hughes, T. J. R. and Franca, L. P. 1987. "A new finite element formulation for computational fluid dynamics: VII. The stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces", Comput. Methods in Appl. Mech. Eng., 65, pp. 85–96.
[932]
Kamal, M. R., Sourour, S. 1973. "Kinetics and thermal characterization of
thermoset cure", Polymer Engineering and Science, 13, 1.
[933]
Ladyzhenskaya, O. A. 1963. The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach.
[934]
Larson, R. G. 1998. The Structure and Rheology of Complex Fluids, Oxford University Press, USA.
[935]
Malaspinas, O., Firètier, N., Deville, M., 2010. "Lattice Boltzmann method for the simulation of viscoelastic fluid flows", 165, pp. 1637–1653.
[936]
McLeish, T. C. B., Larson, R. G. 1998. "Molecular constitutive equations for a class of branched polymers: The pom-pom polymer", J Rheology, 42, pp. 81–110.
[937]
Multifrontal Massively Parallel
Solver (MUMPS 5.2.1) Users' Guide, June 14, 2019.
[938]
Oliveira, P. J., Pinho, F. T., Pinto, G. A. 1998. "Numerical simulation of non-linear elastic flows with a general collocated finite-volume method," J. Non-Newton Fluid, 79, pp. 1–43.
[939]
Owens, R.G., Phillips, T.N. 2002. Computational Rheology, Imperial College Press.
[940]
Phan-Thien, N. and Tanner, R. I. 1977. "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech., 2, pp, 353–365/
[941]
Giesekus, H. 1982. "A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility", J. Non-Newtonian Fluid Mech., 11, pp. 69–109.
[942]
Shakib, F., Hughes, T. J. R., Johan, Z. 1991. "Second World Congress on Computational Mechanics A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations", Comput. Methods in Appl. Mech. Eng. 89, pp. 141–219.
[943]
Tezduyar, T. E. 1991. "Stabilized Finite Element Formulations for Incompressible Flow Computations", Adv. Appl. Mech., 28, pp. 1–44.
[944]
Tezduyar, T. E., Osawa, Y. 2000. "Finite element stabilization parameters computed from element matrices and vectors", Comput. Methods in Appl. Mech. Eng., 190, 411–430
[945]
Xue, S.-C., Phan-Thien, N., Tanner, R. I. 1995. "Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method", J. Non-Newton Fluid, 59, pp. 191–213.
[946]
Zaglmayr, S. 2006. High Order Finite Element Methods for Electromagnetic Field Computation. PhD thesis, Johannes Kepler University, Linz Austria.
[947]
Zienkiewicz, O.C., Taylor, R.C., and Zhu, J.Z. 2005. The Finite Element Method: Its Basics and Fundamentals, Elsevier Butterworth-Heinemann, Oxford, 6th edition.