Fluid Flow Bibliography
[149]
Advani, S.G., Tucker, C. L. 1987. "The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites", J. Rheology, 31(8), p. 751.
[150]
Balci, N., Thomases, B., Renardy,
M., Doering, C.R. 2011. "Symmetric factorization of the conformation tensor in
viscoelastic fluid models", J. Non-Newtonian Fluid Mechanics, 166, pp.
546-553.
[151]
Baltussen, M.G.H.M., et al. 2010. "Anisotropy parameter restrictions for the eXtended Pom-Pom model", J. Non-Newtonian Fluid Mech., 165, pp. 1047-1054.
[152]
Batchelor, G.K., 1971. "The stress generated in a non-dilute suspension of elongated particles by pure straining motion", J. of Fluid Mechanics, 46(4), pp. 813-829.
[153]
Bay, R.S. 1991. Fiber orientation in injection-molded composites: A comparison of theory and experiment. PhD Thesis, Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign.
[154]
Bingham, E.C. 1916 '"An Investigation of the Laws of Plastic Flow" . US Bureau of Standards Bulletin, 13, pp. 309-353.
[155]
Bird, R.B., Armstrong, R.C, Hassager, Ole. 1987. Dynamics of Polymeric Liquids, I-II. John Wiley & Sons, New York.
[156]
Bird, R.B., Stewart, W.E., and Lightfoot, E.N. 1966. “Transport Phenomena”. John Wiley & Sons, New York.
[157]
Burton,T., Jenkins, N., Sharpe, D., Bossanyi, E. 2011. “Wind Energy Handbook”, 2nd ed., Wiley.
[158]
Carreau, P.J. 1972. "Rheological equations from molecular network theories", J. Rheol., 16(1), pp. 99-127.
[159]
Chima, R.V., and Liou, M.-S. 2003. “Comparison of the AUSM+ and H-CUSP Schemes for Turbomachinery Applications”, NASA/TM-2003-212457.
[160]
Chung, D.H., Kwon, T.H. 2002. "Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation", J. Rheology, 46, p. 169.
[161]
Cross, M.M. 1965. "Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems", J. Colloid Sci., 20(5), pp. 417-437.
[162]
Demirdzic, I., Lilek, Z., and Peric, M. 1993. “A collocated finite volume method for predicting flows at all speeds”, Int. J. for Numerical Methods in Fluids, 16, pp. 1029-1050.
[163]
Demirdzic, I. and Muzaferija, S. 1995. “Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology”, Comput. Methods Appl. Mech. Eng., pp. 1-21.
[164]
Dinh, S.M., Armstrong, R.C. 2000. "A Rheological Equation of State for Semiconcentrated Fiber Suspensions", J. of Rheology 28, p. 207.
[165]
Dupret, F., Marchal, J.M. 1986.
"Loss of evolution in the flow of viscoelastic fluids", J. Non-Newtonian Fluid
Mech., 20, pp. 143-171.
[166]
Escudier, M.P., Poole, R.J., Dales, C., Nouar, C., Desaubry, C., Gresham, L. and Pullum, L. 2005. Observations of asymmetrical flow behaviour in transitional pipe flow of yield-stress and other shear thinning liquidsԬ J. Non-Newtonian Fluid Mechanics, 127, pp. 143-155.
[167]
Ferziger, J.H. and Peric, M. 2002. “Computational Methods for Fluid Dynamics”, 3rd rev. ed., Springer-Verlag, Berlin.
[168]
Ferry, John D., 1980. Viscoelastic Properties of Polymers, 3rd edition, Wiley.
[169]
Giles, M.B. 1988. “Non-reflecting boundary conditions for the Euler equations”, CFDL Report 88-1, MIT Dept. of Aero. and Astro.
[170]
Giles, M.B. 1990. “Non-reflecting boundary conditions for Euler equation calculations”, AIAA Journal, 28(12):2050-2058.
[171]
Giles, M.B. 1991 “UNSFLO: A numerical method for unsteady flow in turbomachinery”, Gas Turbine Laboratory Report GTL 205, MIT Dept. of Aero. and Astro.
[172]
Gnoffo, P. A., Gupta, R. N., and Shinn, J. L. 1989. “Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium”, NASA TP-2867.
[173]
Graboski, M. S. and Daubert, T. E. 1978. “A Modified Soave Equation of State for Phase Equilibrium Calculations: Hydrocarbon Systems”, Ind. Eng. Chem. Process Des. Dev., 17(4), pp. 443-448.
[174]
Graboski, M. S. and Daubert, T. E. 1978. “A Modified Soave Equation of State for Phase Equilibrium Calculations: Systems Containing CO2, H2S, N2, and CO”, Ind. Eng. Chem. Process Des. Dev., 17(4), pp. 448-454.
[175]
Guenette, R., Fortin, M. 1995. "A new mixed finite element method for computing
viscoelastic flows", J. Non-Newtonian Fluid Mechanics. 60, pp 27-52.
[176]
Gupta, R. N., Lee, K. P., Thompson, R. A., and Yos, J. M. 1991. “Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30000 K”, NASA STI/Recon Technical Report N, 92, 11285.
[177]
Hansen, M. 2007. “Aerodynamics of Wind Turbines, 2nd ed. Routledge.
[178]
Hill, D. A., Hasegawa, T., Denn, M. M. 1990. "On the apparent relation between adhesive failure and melt fracture," J. of Rheology, 34(6)
[179]
Hinch, E.J., Leal, L.G. 1975. "Constitutive equations in suspension mechanics." J. Fluid Mech. 71(3), pp.481-495.
[180]
Hosangadi, A., Sachdev, J. , Sankaran, V. 2012. "Improved Flux Formulations for Unsteady Low Mach Number Flows". ICCFD7 proceedings.
[181]
Huang, H., and Ayoub, J. 2006. “Applicability of the Forchheimer Equation for Non-Darcy Flow in Porous Media”. SPE Journal, March 2008, pp. 112-122.
[182]
International Association for the Properties of Water and Steam. 2007. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, IAPWS Secretariat, Lucerne, Switzerland. (available at www.iapws.org).
[183]
Issa, R. I. , Gosman, A. D., and
Watkins, A. P., 1986. "The Computation of Compressible and Incompressible
Recirculating Flows by a Non-Iterative Implicit Scheme", J. Computational
Physics, 62(1).
[184]
Jameson, A., Schmidt, W. and Turkel, E. 1981. “Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes”, AIAA Paper 81-1259.
[185]
Lau, H. C., Schowalter, W. R.
1986. "A Model for Adhesive Failure of Viscoelastic Fluids During Flow", J. of
Rheology, 30(1).
[186]
Lee, J.S., Dylla-Spears, R., Teclemariam, N.P., and Muller, S.J. 2007.
"Microfluidic four-roll mill for all flow types", Applied Physics Letters, 90,
074103.
[187]
Legat, V., Marchal, J.M. 1992. "Predictions of threedimensional general shape extrudates by an implicit iterative scheme," Int. J. for Numerical Methods in Fluids, 14, 609-625.
[188]
Likhtman, A. E., Graham, R. S. 2003. "Simple constitutive equation for linear polymer melts derived from molecular theory: Rolie-Poly equation" , J. of Non-Newtonian Fluid Mech., 114-1, pp. 1-12.
[189]
Liou, M.-S. 1996. “A Sequel to AUSM: AUSM+”, J. Comput. Phys., 129: 364-382.
[190]
Liou, M.-S. 2001. “Ten Years in the Making--AUSM-Family”, AIAA 2001-2521.
[191]
Lipscomb, G.G., Denn, M.M., Hur, D.U., Boger, D.V. 1988. "The flow of fiber suspensions in complex geometries", J. of Non-Newtonian Fluid Mechanics, 26(3), pp. 297-325.
[192]
Lockwood, B. A. 2012. “Gradient-based Approaches for Sensitivity Analysis and Uncertainty Quantification within Hypersonic Flows”, Ph.D. Dissertation, University of Wyoming.
[193]
Loehmer, R. 2009. “On Limiters for Minimal Vorticity Dissipation”, AIAA 2009-135.
[194]
Lynn, N. and Steinhoff, J. 2007. “Large Reynolds Number Turbulence Modeling with Vorticity Confinement”, AIAA 2007-3965.
[195]
Makkonen, L. 2000.
“Models for the growth of rime, glaze, icicles and wet snow on structures”,
Phil. Trans. R. Soc. Lond. A, 358, pp. 2913-2939.
[196]
Manwell, J.F., McGowan, J., and Rogers, A. 2009. “Wind Energy Explained: Theory, Design and Application”, 2nd ed. Wiley.
[197]
Mathur, S.R. and Murthy, J.Y. 1997. “Pressure-based method for unstructured meshes”, Numerical Heat Transfer, Part B: Fundamentals, 31(2), pp. 195-214.
[198]
Mathur, S.R. and Murthy, J.Y. 1997. “Pressure boundary conditions for incompressible flow using unstructured meshes”, Numerical Heat Transfer, Part B: Fundamentals, 32(3), pp. 283-298.
[199]
Oldroyd, J. 1950. "On the
Formulation of Rheological Equations of State" , Proceedings of the Royal
Society of London, Series A, Mathematical and Physical Sciences, 200, pp.
523-541.
[200]
Pasquali, M., and Scriven, L.E. 2002. "Free surface flows of polymer solutions
with models based on the conformation tensor", J. Non-Newtonian Fluid Mechanics,
108,1-3, pp. 363-409.
[201]
Peric, M., Kressler, R., and Scheuerer, G. 1988. “Comparison of finite-volume numerical methods with staggered and colocated grids”, Computers & Fluids, 16(4), pp. 389-403.
[202]
Phan-Thien, N., Fan, X.-J., Tanner, R.I., Zheng, R. 2002. "Folgar–Tucker constant for a fibre suspension in a Newtonian fluid", J. of Non-Newtonian Fluid Mechanics, 103(2-3), pp. 251-260.
[203]
Phan-Thien, N., Graham, A.L. 1991. "A new constitutive model for fibre suspensions: flow past a sphere", Rheologica Acta, 30(1), pp.44-57.
[204]
Poinsot, T. J. and Lele, S.K., 1992. “Boundary Conditions for Direct
Simulations of Compressible Viscous Flows,” J. of Comp. Physics, 101, pp.
104-129.
[205]
Poling, B. E., Prausnitz, J. M., and O'Connell, J. P., “The Properties of Gases & Liquids”, 5th Ed., McGraw-Hill, 2001.
[206]
Rajagopalan, D., Armstrong, R.C., Brown, R.A. 1990. "Finite element methods for calculation of steady viscoelastic flow using constitutive equations with a Newtonian viscosity", J. Non-Newtonian Fluid Mech., 36, pp 159-192.
[207]
Reid, R. C., Prausnitz, J. M., and Poling, B. E. 1987. “The Properties of Gases & Liquids”, 4th Ed., McGraw-Hill.
[208]
Saxer, A.P. 1992. “A numerical analysis of three-dimensional inviscid rotor/stator interactions using non-reflecting boundary conditions”, Ph.D. Thesis. MIT Dept. of Aero. and Astro.
[209]
Shaqfeh, E.S.G., Fredrickson, G.H. 1990. "The hydrodynamic stress in a suspension of rods", Physics of Fluids A: Fluid Dynamics, 2, 7.
[210]
Soave, G. 1972. “Equilibrium Constants from a Modified Redlich–Kwong Equation of State”, Chem. Eng. Sci., 27, pp. 1197-1203.
[211]
Steinhoff, J., Lynn, N. and Wang, L. 2005. “Computation of High Reynolds Number Flows Using Vorticity Confinement: I. Formulation”, UTSI Preprint.
[212]
Tezduyar, T.E., Osawa, Y. 2000. "Finite element stabilization parameters
computed from element matrices and vectors". Computer Methods in Applied
Engineering, 190, 3-4, pp. 411-430.
[213]
Turkel, E. 1987. “Preconditioned methods for solving the incompressible and low speed compressible equations”, Journal of Computational Physics, 72, pp. 277-298.
[214]
Varchanis, S., Syrakos, A., Dimakopoulos, Y., Tsampoulos, J. 2019. "A new
finite element formulation for viscoelastic flows: Circumventing simultaneously
the LBB condition and the high-Weissenberg number problem", J. Non-Newtonian
Fluid Mechanics, 267, pp 78-97.
[215]
Verbeeten, W.M.H., Peters, G.W.M., and Baaijens, F.P.T. 2002. "Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model", J. Non-Newtonian Fluid Mech., 108, pp. 301-326.
[216]
Weiss, J.M., Maruszewski, J.P., and Smith, W.A. 1999. “Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid”, AIAA Journal, 37(1), pp. 29-36.
[217]
Weiss, J.M., and Smith, W.A. 1995. “Preconditioning applied to variable and constant density flows”, AIAA Journal, 33(11), pp. 2050-2057.
[218]
Yang, Z. et al. 2000. “Recent Improvements to a Hybrid Method for Rotors in Forward Flight”, AIAA Conference Reno.
[219]
Yasuda, K. 1979. Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids. PhD Thesis, Dept. of Chemical Engineering, Massachusetts Institute of Technology.