Motion Bibliography

[14]
Hardy, R.L. 1990. “Theory and applications of the multiquadric-biharmonic method”, Comput. Math. Applic., 19, pp. 163-208.

[15]
Faul, A.C., Goodsell, G. and Powell, M.J.D. 2005. “A Krylov subspace algorithm for multiquadric interpolation in many dimensions.”, IMA Journal of Numerical Analysis, 25, pp. 1-24.

[16]
Gumerov, N.A. and Duraiswami, R. 2007. “Fast radial basis function interpolation via preconditioned Krylov iteration.”, SIAM Journal on Scientific Computing, 29, pp. 1876-1899.

[17]
Beatson, R.K., Powell, M.J.D. and Tan, A.M. 2006. “Fast evaluation of polyharmonic splines in three dimensions”, DAMTP 2006/NA03.

[18]
Lee, S., Wolberg, G. and Shin, S.Y. 1997. "Scattered Data Interpolation with Multilevel B-Splines" IEEE Transactions on Visulization and Computer Graphics, Vol. 3, No. 3, July-Sept. 1997, pp. 228-244.

[19]
Joy, K. On-Line Geometric Modelling Notes. 2000. Bicubic Uniform B-Spline Surface", Computer Science Department, University of California, 2000: https://www.cs.unc.edu/~dm/UNC/COMP258/LECTURES/Cubic-B-Spline-Surface-Refinement.pdf

[20]
Hjelle, Ø. 2001. "Approximation of Scattered Data with Multilevel B-splines". SINTEF report, 2001 https://www.sintef.no/globalassets/upload/ikt/9011/geometri/mba/mba_doc/index.html