NTC Collision Model Reference

The NTC (No Time Counter) collision model simulates droplet collisions in transient simulations. The model works in two steps, first detecting droplet collisions, then calculating the outcome of the collision.

Theory See NTC Algorithm.
Provided By [phase] > Models > Collision Detection
Example Node Path [phase] > Models > NTC Collision Model
Requires Time: Implicit Unsteady or PISO Unsteady

Optional Models: Lagrangian Multiphase

In the Lagrangian phase:

  • Particle Type: Material Particles
  • Particle Shape: Spherical Particles (selected automatically)
  • Material: Liquid or Multi-Component Liquid
  • Secondary Breakup: any
Activates Model Controls Collision Dynamics

See Collision Dynamics Properties.

Materials Surface Tension for Liquid under the Lagrangian phase.
Field Functions Collision Efficiency, Collision Outcome, Droplet Surface Tension, Relative Weber Number. See Lagrangian Multiphase Field Function Reference.

Collision Dynamics Properties

The Collision Dynamics node controls the selection and customizing of the collision outcome algorithm.

Method Corresponding Method Node
Ashgriz Method

Selects a collision outcome map with the following outcomes: grazing (stretching) separation, coalescence, and reflexive separation.

Ashgriz Method
Exposes sub-nodes for each collision outcome:
Grazing Separation Criteria
This node exposes the following empirical constants from Eqn. (3147):
  • Exponent a
  • PreExponent A
  • WeOffset W e c
Reflexive Separation Criteria
This node exposes the following empirical constants from Eqn. (3147):
  • Exponent a
  • PreExponent A
  • WeOffset W e c
Collision Gamma Function
This node exposes the following empirical constants from Eqn. (3148):
  • FGamma_3 α 3
  • FGamma_2 α 2
  • FGamma_1 α 1
  • FGamma_0 α 0
Composite Method

Selects a collision outcome map with the following outcomes: grazing (stretching) separation, bouncing, coalescence, and reflexive separation.

Composite Method
Exposes sub-nodes for the methods for boundary curves:
Bounce Method
None

Excludes the bounce mode from consideration in the composite method.

Sommerfeld
Selects the Sommerfeld method for the bounce composite method. This node exposes the following empirical constants from Eqn. (3155) :
  • K0 k 0 , K1 k 1 , K2 k 2 , K3 k 3 , KL k l
  • P0 Φ 0 , P1 Φ 1 , P2 Φ 2 , P3 Φ 3 , PL Φ l
  • B0 β 0 , B1 β 1 , B2 β 2 , B3 β 3 , BL β l
Stretching Separation Method
None
Excludes the stretching separation mode from consideration in the composite method.
Suo-Jia
Selects the Suo-Jia method for the stretching separation composite method. This node exposes the following empirical constants from Eqn. (3157) :
  • A0 a 0
  • A1 a 1
  • A2 a 2
Reflexive Separation Method
None
Excludes the reflexive separation mode from consideration in the composite method.
Ashgriz
Selects the Ashgriz method for the reflexive separation composite method.
ORourke Method

Selects a collision outcome map with the following outcomes: grazing (stretching) separation, coalescence, and bouncing.

ORourke Method
Exposes sub-nodes for each collision outcome:
Coalescence Criteria
This node exposes the following empirical constants from Eqn. (3147):
  • Exponent a
  • PreExponent A
  • WeOffset W e c
Bouncing Criteria
This node exposes the following empirical constants from Eqn. (3147):
  • Exponent a
  • PreExponent A
  • WeOffset W e c
Collision Gamma Function
This node exposes the following empirical constants from Eqn. (3148):
  • FGamma_3 α 3
  • FGamma_2 α 2
  • FGamma_1 α 1
  • FGamma_0 α 0