Reacting Flow Bibliography

Acoustic Modal Analysis

[742]
Nicoud, F., Benoit, L., Sensiau, C., and Poinsot, T. 2007. "Acoustic Modes in Combustors with Complex Impedances and Multidimensional Active Flames", in AIAA Journal, Vol. 45, No. 2.

[743]
Silva, C. 2007. "First Step of Development of a Numerical Tool for Combustion Noise Analysis". Master Internship Report. Ecole Nationale Superieure de l’Aeronautique et de l’Espace.

[744]
André Kaufmann, Franck Nicoud, Thierry Poinsot. 2002. Flow forcing techniques for numerical simulation of combustion instabilities. Combustion and Flame, Elsevier, 131 (4), pp.371-385. 10.1016/S0010-2180(02)00419-4. hal-00910199.

Adiabatic PPDF Bibliography

[745]
Jones, W.P. 1980. ‘Prediction methods for turbulent flames’, in “Prediction Methods for Turbulent Flow” (Ed. W. Kollman). Hemisphere, Washington, D.C., pp. 1-45.

[746]
Peters, N. 1986. ‘Laminar flamelet concepts in turbulent combustion’, 21st Symp. (Int.) on Combustion, The Combustion Institute, pp. 1231-1250.

[747]
Pitsch, H., Desjardins, O., Balarac, G. and Ihme, M. 2008. “Large-Eddy Simulation of Turbulent Reacting Flows”, Prog. Aerospace Sci., pp. 466–478.

[748]
Veynante D. and Vervisch L. 2002. ‘Turbulent Combustion Modeling’ in ‘Progress in Energy and Combustion Science’, Vol. 28, pp. 248-252.

Analytical Jacobian Libraries

[749]
Lu, T. 2012. "Computational Tools for Diagnostics and Reduction of Detailed Chemical Kinetics", 2012 Princeton-CEFRC Summer School on Combustion, Princeton University.

Clustering

[750]
Babajimopoulos, 1., Assanis, D. N., Flowers, D. L., Aceves, S. M., Hessel, R. P., "A fully coupled computational fluid dynamics and multi-zone model with detailed chemicalkinetics for the simulation of premixed charge compression ignition engines", Int. Journal of Engine Research, 2005, vol 6 no 5

Coal

[751]
Kobayashi, H., Howard, J.B., and Sarofim, A.F. 1977. “Coal Devolatilization at High Temperatures”, 18th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, p. 411.

[752]
Smoot, D.J., and Smith, P.J. 1985. “Coal Combustion and Gasification”, The Plenum Chemical Engineering series, New York.

Coherent Flame

[753]
Meneveau, C., and Poinsot, T. 1991 ‘Stretching and quenching of flamelets in premixed turbulent combustion’, Combust. Flame, 86, pp. 311-332.

CVODE

[754]
S.B. Pope, V. Hiremath, S.R. Lantz, Z. Ren and L. Lu (2012) ISAT-CK7: "A Fortran 90 library to accelerate the implementation of combustion chemistry"

http://tcg.mae.cornell.edu/ISATCK7

Dynamic Mechanism Reduction

[755]
T. Lu, C. Law, Proc. Combust. Inst. 30 (2005) 1333-1341.

EBU

[756]
B. F. Magnussen and B. H. Hjertager."On mathematical models of turbulent combustion with special emphasis on soot formation and combustion". In 16th Symp. (Int'l.) on Combustion. The Combustion Institute. 1976.

Eddy Contact Micromixing

[757]
Forney, L. J., and Nafia, N. 2000. “Eddy Contact Model: CFD Simulations of Liquid Reactions in Nearly Homogeneous Turbulence”, Chem. Eng. Sci., 55(24), pp. 6049-6058.

[758]
Hjertager, L.K., Hjertager, B.H., Solberg, T., 2002. “CFD modelling of fast chemical reactions in turbulent liquid flows”, Computers and Chem. Eng. 26 pp. 507–515.

Eddy Dissipation Concept

[759]
B. F. Magnussen, "The Eddy Dissipation Concept a Bridge between Science and Technology," in ECCOSMAS Thematic Conference on Computational Combustion, June 21-24, 2005. Lisbon, Portugal.

[760]
B.F. Magnussen and B.H. Hjertager 'On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow', 19th AIAA Aerospace Meeting, St. Louis, USA, 1981.

[761]
I. S. Ertesvag and B. Magnussen, "The Eddy Dissipation Turbulence Energy Cascade Model," Combustion Science and Technology, vol.159, pp.213-235, 2000.

FGM

[762]
J.A. van Oijen, L.P.H. de Geoy. Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol., 161:113, 2000.

[763]
H. Lehtiniemi, F. Mauß, M. Balthasar, and I. Magnusson. Modeling diesel spray ignition using detailed chemistry with a progress variable approach. Combust. Sci. and Tech. 178 (10-11) (2006) 1977-1997.

[764]
G. Goldin, Y. Zhang, "A GENERALIZED FGM PROGRESS VARIABLE WEIGHT OPTIMIZATION USING HEEDS" , Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition GT2017-64446, June 26-30, 2017, Charlotte, NC, USA.

[765]
A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse. A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proceedings of the Combustion Institite 000 (2018) 1-8.

ISAT / Perfectly Stirred Reactor

[766]
Pope, S.B. 1997. “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust. Theory and Modelling, 1, pp. 41-63.

Laminar Flame Concept

[767]
R. J. Kee, F. M. Rupley, and J. A. Miller, "Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics" Sandia National Laboratories Report SAND89- 8009, (1990).

Laminar Flame Speed

[768]
Metghalchi, M. and Keck, J.C. 1982 ‘Burning velocities of mixtures of air with methanol, isooctane, and indelene at high pressure and temperature’, Combust. Flame, 48, pp. 191-210.

[769]
Gülder, Ö., 1984. 'Correlations of laminar combustion data for alternative S.I. Engine fuels', S.I. Engine fuels, SAE Paper 841000.

[770]
Gülder, Ö.L. 1991 ‘Turbulent premixed flame propagation models for different combustion regimes’, Proceedings of The Combustion Institute, Vol.23, pp. 743-750.

[771]
Hirasawa, T., Sung, C.J., Joshi, A., Yang, Z., Wang, H., and Law, C.K. 'Determination of Laminar Flame Speeds Using Digital Particle Image Velocimetry: Binary Fuel Blends of Ethylene, n-Butane, and Toluene', Proceedings of the Combustion Institute, 29 (2002) pp. 1427-1434.

[772]
Pessina, V., Berni, F., Fontanesi, S., Stagni, A., and Mehl, M. 'Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications', International Journal of Hydrogen Energy, 47 (2022) pp. 25780-25794.

[773]
Verhelst S, T'Joen C, Vancoillie C, Demuyck J. 'A correlation for the laminar burning velocity for use in hydrogen spark ignition engine simulation' , International Journal of Hydrogen Energy, 36 (2011) pp. 957-974.

Non-Adiabatic PPDF Bibliography

[774]
Smoot and P. Smith, Coal Combustion and Gasification, The Plenum Chemical Engineering Series, 1985.

NOx

[775]
Baulch, D. L., Drysdall, D. D., Horne, D. G., and Lloyd, A. C. 1973. Evaluated Kinetic Data for High Temperature Reactions, vols. 1-3. Butterworth.

[776]
De Soete, G. G. 1975. “Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen”, in 15th Symp. (Intl.) on Combustion, pp. 1093-1102. The Combustion Institute.

[777]
Hampartsumian, E., Nimmo, W., Pourkashanian, M., Williams, A., and Missaghi, M. 1993. "The Prediction of NOx Emissions from Spray Combustion", Combustion Science and Technology, 93:1, 153-172, DOI: 10.1080/00102209308935287.

Particle Reactions

[778]
Smoot, D.J. and Smith, P.J. 1985. “Coal Combustion and Gasification”, The Plenum Chemical Engineering series, New York.

Polymerization

[779]
Pladis and Kiparissides, Chem Eng Sc, 53, No.18, pp 3315, 1998

Reactor Network

[780]
Thakre, P., Veljkovic, I., Lister, V., and Goldin, G., "Modeling of Pollutant Formation in Gas Turbine Combustors Using Fast Reactor Network Model", Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition GT2020-14800.

Soot

[781]
Appel, J., Bockhorn, H., and Frenklach, M. (2000) "Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons", Combustion and Flame, 122, pp. 122–136.

[782]
Balthasar, M., Mauss, F., and Wang, H. (2002). “A computational study of particle thermal ionization and its effect on soot mass growth in laminar premixed flames”, Comb. & Flame, 129, pp. 204–216.

[783]
Bilger, R.W. (1988). “The structure of turbulent nonpremixed flames”, Proc. Combust. Inst. 23, pp. 475–488.

[784]
Blanquart,G. and Pitsch, H. (2009). “Analyzing the effects of temperature on soot formation with a joint volume-surface-hydrogen model”, Combustion and Flame 156, pp. 1614–1626.

[785]
Brookes, S. J. and Moss, J. B. 1999. "Predictions of soot and thermal radiation in confined turbulent jet diffusion flames," Comb. & Flame, 116, pp. 486–503.

[786]
Brown, N., Revzan, K., and Frenklach, M. (1998) "Detailed Kinetic Modeling of Soot Formation in Ethylene/Air Mixtures Reacting in a Perfectly Stirred Reactor," Proc. Combust. Inst., 27, pp. 1573–1580.

[787]
Frenklach, M. (2002) "Reaction Mechanism of Soot Formation in Flames," Phys. Chem. Chem. Phys., 4, pp. 2028–2037.

[788]
Frenklach, M. and Wang, H. (1994) "Detailed Mechanism and Modeling of Soot Particle Formation," in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, ed.), Springer-Verlag, New York.

[789]
Kazakov, A. and Frenklach, M. (1998). “Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation With the Method of Moments and Application to High-Pressure Laminar Premixed Flames”, Comb. & Flame, 114, pp. 484–501.

[790]
Kazakov, A., Wang, H. and Frenklach, M. (1995). “Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar”, Comb. & Flame, 100, pp. 111–120.

[791]
Lindstedt, R. P. and Louloudi, S. A. (2005) "Joint-Scalar Transported PDF Modeling of Soot Formation and Oxidation," Proc. Combust. Inst., 30, pp. 775–783.

[792]
Marchal, C. "Modelisation de la Formation et de l'Oxydation des Suies dans un Moteur Automobile". PhD Thèse, Université d’Orléans (déc 2008).

[793]
Mauss, F., Trilken, B., Breitbach, H., and Peters, N. (1994). “Soot Formation in Partially Premixed Diffusion Flames at Atmospheric Pressure”, Soot Formation in Combustion: Mechanisms and Models, H. Bockhorn ed., Springer Verlag, pp. 325–349.

[794]
Mauss, F., Lehtiniemi, H., and Netzell, K. (2007). "Calculating the Soot Particle Size Distribution Function in Turbulent Diffusion Flames Using a Sectional Method," Proc. Combust. Inst., 31, pp. 667–674.

[795]
Modest, Michael F., 2003. Radiative Heat Transfer, Academic Press.

[796]
Muller M.E., “Large Eddy Simulation of Soot Evolution in Turbulent Reacting Flows”. PhD Thesis, Stanford University (June 2012).

[797]
Nakov, G., Mauss, F., Wenzel, P., Steiner, R. et al., (2010). "Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach," SAE Int. J. Engines 2(2):89–104.

[798]
Netzell, K., "Development and Application of Detailed Kinetic Models for the Soot Particle Size Distribution Function". PhD Thesis, Lund Institute of Technology (Nov 2006).

[799]
Wen, Z., Yun, S., Thomson, M. J., and Lightstone, M. F. (2003). "Modeling soot formation in turbulent kerosene/air jet diffusion flames," Comb. & Flame, 135, pp. 323–340.

Spark Ignitor

[800]
JM Duclos, O.Colin, “Arc and Kernel Tracking Ignition Model for 3D Spark Ignition Engine Calculations” COMODIA 2001, IFP 343-350

[801]
S.Falfari, GM Bianchi “Development of an Ignition Model for SI Engines Simulation”, SAE paper 2007-01-0148

[802]
J.Song, M.Sunwoo “A Modeling and Experimental Study of Initial Flame Kernel Development and Propagation in SI Engines”, SAE paper 2000-01-0960

[803]
StarCD V4.28 Methodology Guide

TFC

[804]
Ranasinghe, C and Malalasekera, W. 2020. "Modelling combustion in spark ignition engines with special emphasis on near wall flame quenching", Int. J. Engine Research, 23(1882)

[805]
Zimont, V.L., Polifke, W., Bettelini, M., and Weisenstein, W. 1998. “An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure”, ASME J. Eng. Gas Turbines and Power, 120(3), pp. 526-532.

[806]
Peters, N. 2000. Turbulent Combustion, Cambridge University Press, Cambridge.

[807]
H. Yamashita, M. Shimada and T. Takeno- "A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames" - Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, 1996/pp. 27-34, Web Search

Thickened Flame

[808]
Blint, R. 1986. “The relationship of the laminar flame width to flame speed”, Combust. Sci. and Tech., 49:79.

[809]
Charlette, F., Meneveau, C. and Veynante, D. 2002. “Wrinkling Model for LES of Premixed Turbulent Combustion Part I: Non–Dynamic Formulation and Initial Tests”, Combust. Flame, 131:159.

[810]
Colin, O., Ducros, F., Veynante, D. and Poinsot, T. 2000. “A Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion”, Phys. Fluids, 12:1843.

[811]
Durand, L. and Polifke, W. 2007. “Implementation of the Thickened Flame Model for Large Eddy Simulation of Turbulent Premixed Combustion in a Commercial Solver”, ASME Paper No. GT2007-28188.

[812]
Legier, J.P., Poinsot, T. and Veynante, D. 2000. “Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion”, Proceedings of the Summer Program 2000, Center for Turbulence Research, pp. 157-168.